Climate change may lead to bigger atmospheric rivers

24 May 2018

Joint Release

WASHINGTON — A new study shows that climate change is likely to intensify extreme weather events known as atmospheric rivers across most of the globe by the end of this century, while slightly reducing their number.

The new study, published online in Geophysical Research Letters, a journal of the American Geophysical Union, projects atmospheric rivers will be significantly longer and wider than the ones we observe today, leading to more frequent atmospheric river conditions in affected areas.

“The results project that in a scenario where greenhouse gas emissions continue at the current rate, there will be about 10 percent fewer atmospheric rivers globally by the end of the 21st century,” said the study’s lead author, Duane Waliser, of NASA’s Jet Propulsion Laboratory in Pasadena, California. “However, because the findings project that the atmospheric rivers will be, on average, about 25 percent wider and longer, the global frequency of atmospheric river conditions — like heavy rain and strong winds — will actually increase by about 50 percent.”

The results also show that the frequency of the most intense atmospheric river storms is projected to nearly double.

Atmospheric rivers are long, narrow jets of air that carry huge amounts of water vapor from the tropics to Earth’s continents and polar regions. These “rivers in the sky” typically range from 250 to 375 miles (400 to 600 kilometers) wide and carry as much water — in the form of water vapor — as about 25 Mississippi Rivers. When an atmospheric river makes landfall, particularly against mountainous terrain (such as the Sierra Nevada and the Andes), it releases much of that water vapor in the form of rain or snow.

These storm systems are common — on average, there are about 11 present on Earth at any time. In many areas of the globe, they bring much-needed precipitation and are an important contribution to annual freshwater supplies. However, stronger atmospheric rivers — especially those that stall at landfall or that produce rain on top of snowpack — can cause disastrous flooding.

Atmospheric rivers show up on satellite imagery, including in data from a series of actual atmospheric river storms that drenched the U.S. West Coast and caused severe flooding in early 2017.

In early 2017, the Western United States experienced rain and flooding from a series of storms flowing to America on multiple streams of moist air, each individually known as an atmospheric river. These atmospheric rivers are visible in satellite imagery taken by the Atmospheric Infrared Sounder (AIRS) instrument on NASA’s Aqua satellite. This imagery shows several distinct plumes of moisture in the atmosphere and their movement across the Pacific Ocean to the U.S. where much of it fell as rain or snow.
Credit: NASA

The Study

Climate change studies on atmospheric rivers to date have been mostly limited to two specific regions, the western United States and Europe. They have typically used different methodologies for identifying atmospheric rivers and different climate projection models — meaning results from one are not quantitatively comparable to another.

The team sought to provide a more streamlined and global approach to evaluating the effects of climate change on atmospheric river storms.

The study relied on two resources — a set of commonly used global climate model projections for the 21st century developed for the Intergovernmental Panel on Climate Change’s latest assessment report, and a global atmospheric river detection algorithm that can be applied to climate model output. The algorithm, developed earlier by members of the study team, identifies atmospheric river events from every day of the model simulations, quantifying their length, width and how much water vapor they transport.

The team applied the atmospheric river detection algorithm to both actual observations and model simulations for the late 20th century. Comparing the data showed that the models produced a relatively realistic representation of atmospheric rivers for the late 20th century climate.

They then applied the algorithm to model projections of climate in the late 21st century. In doing this, they were able to compare the frequency and characteristics of atmospheric rivers for the current climate with the projections for future climate.

The team also tested the algorithm with a different climate model scenario that assumed more conservative increases in the rate of greenhouse gas emissions. They found similar, though less drastic changes. Together, the consideration of the two climate scenarios indicates a direct link between the extent of warming and the frequency and severity of atmospheric river conditions.

What does this mean?

The significance of the study is two-fold.

First, “knowing the nature of how these atmospheric river events might change with future climate conditions allows for scientists, water managers, stakeholders and citizens living in atmospheric river-prone regions [e.g. western N. America, western S. America, S. Africa, New Zealand, western Europe]  to consider the potential implications that might come with a change to these extreme precipitation events,” said Vicky Espinoza, postdoctoral fellow at the University of California-Merced and first author of the study.

And secondly, the study and its approach provide a much-needed, uniform way to research atmospheric rivers on a global level — illustrating a foundation to analyze and compare them that did not previously exist.

Limitations

Data across the models are generally consistent — all support the projection that atmospheric river conditions are linked to warming and will increase in the future; however, co-author Marty Ralph of the University of California, San Diego, points out that there is still work to be done.

“While all the models project increases in the frequency of atmospheric river conditions, the results also illustrate uncertainties in the details of the climate projections of this key phenomenon,” he said. “This highlights the need to better understand why the models’ representations of atmospheric rivers vary.”

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing 60,000 members in 137 countries. Join the conversation on FacebookTwitterYouTube, and our other social media channels.


Notes for Journalists
This paper is free for 30 days. Journalists and public information officers (PIOs) can download a PDF copy of the article by clicking on this link: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017GL076968

Journalists and PIOs may also order a copy of the final paper by emailing a request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Title

“Global Analysis of Climate Change Projection Effects on Atmospheric Rivers”

Authors:
Vicky Espinoza: Sonny Astani Civil and Environmental Engineering Department, University of Southern California, Los Angeles, CA, USA; and Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;

Duane E. Waliser: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;

Bin Guan: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; and Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA, USA;

David A. Lavers: European Centre for Medium-Range Weather Forecasts, Reading, UK;

F. Martin Ralph: Center for Western Weather and Water Extremes, Scripps Institution of Oceanography at University of California, San Diego, CA, USA.

Contact information for the authors:
Duane Waliser: +1 (818) 393-4094; duane.e.waliser@jpl.nasa.gov


AGU Contact:

Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

NASA JPL Press Contact:
Alan Buis
+1 (818) 354-0474
Alan.Buis@jpl.nasa.gov