Dryer, warmer night air is worsening some Western wildfires

5 August 2021

Joint Release

The Wooley Fire burns through the night on 9 November 2018 in Ventura and LA Counties, California.
Credit: USDA Forest Service

AGU press contact:
Liza Lester, +1 (202) 777-7494, [email protected] (UTC-4 hours)

University of Washington press contact:
Hannah Hickey, +1 (206) 543-2580, [email protected]  (UTC-7 hours)

Contact information for the researchers:
Andy Chiodi, Cooperative Institute for Climate, Ocean & Ecosystem Studies, [email protected] (UTC-7 hours)
Brian Potter, U.S. Forest Service’s Pacific Wildland Fire Sciences Laboratory, [email protected] (UTC-7 hours)

WASHINGTON—Firefighters have reported that Western wildfires are starting earlier in the morning and dying down later at night, hampering their ability to recover and regroup before the next day’s flareup.

A new study suggests why: The drying power of nighttime air over much of the Western U.S. has increased dramatically in the past 40 years. The paper was published in Geophysical Research Letters, AGU’s journal for high-impact, short-format reports with immediate implications spanning all Earth and space sciences.

“Nighttime is an important time in fire management. When fires die down at night it gives firefighters a chance to rest, move equipment and strategize. The problem firefighters are reporting is an unexpected increase in nighttime fire activity,” said lead author Andy Chiodi, a University of Washington research scientist at the Cooperative Institute for Climate, Ocean & Ecosystem Studies, a joint center with the National Oceanic and Atmospheric Administration. “Our findings support that this has been going on over the last 40 years over much, but not all, of the Western U.S.”

Drier night air: Nighttime conditions have become much more conducive to drying in recent years in the Western United States, especially in California’s central valley and the Bitterroot-Blue Mountain region of Idaho and surrounding states, compared to 40 years ago. A new study calculated the percent change from the ’80s and ’90s to the 2010s in the nighttime vapor pressure deficit, a measure of the drying power of the air, during summer months.
Credit: Chiodi et al./Geophysical Research Letters

Earth’s atmosphere is warming due to climate change and warming in many places has been greater at night. Warmer night air had been suspected as the culprit altering the daily pattern of wildfire activity, with burns continuing later into the night.

The new study, however, shows it’s not just that the night air is warmer. The study found a dramatic shift from 1980 to 2019 in its drying power—how much moisture the nighttime air can carry away from the fuels—over much of the Western U.S. This shift is not captured in climate models, and the authors say it could be related to natural long-term cycles rather than to climate change.

“We paid special attention to the change in recent years compared to the conditions seen in the ’80s and ’90s, which is when many of the current firefighters started their careers, and presumably formed their ideas about what normal fire behavior should look like,” Chiodi said. “We tried to quantify the changes that we were hearing about from firefighters.”

Moisture deficit

The study looks at the “vapor pressure deficit,” or the difference between the moisture in the air and the saturation moisture level at that air temperature. This difference is a measure of the air’s drying power.

“In the southern Sierra Nevada, the average summer nighttime vapor pressure deficit for the recent decade was 50% higher than the average in the ’80s and ’90s,” Chiodi said. “I was surprised—it’s unusual to see geophysical data change that dramatically.”

Some of this shift in vapor pressure deficit is happening because warmer nighttime air, caused by climate change, produces higher saturation values. But part of the drying power is happening because the nighttime air in some regions has less moisture, and that effect is not predicted by climate change models, at least this much or in this pattern. The authors find a possible connection to the Pacific Decadal Oscillation, a long-term cycle that can influence inland weather.

The increased drying power of nighttime air is especially pronounced in California’s San Fernando Valley and in the Bitterroot-Blue Mountain Region—including parts of the Idaho Panhandle, southeast Washington, northeast Oregon and western Montana.

“Firefighters had been saying for several years that they feel some fires burn later into the evening than they used to,” said co-author Brian Potter at the U.S. Forest Service’s Pacific Wildland Fire Sciences Laboratory. “We found that in some areas, the amount of water in the air is decreasing, sort of doubling up on the warmer nights. These areas, including where the Snake River Complex and Lick Creek fires are burning right now, are much more likely to have fires burn late into the night.”

The analysis used hourly weather outputs from the European Centre for Medium-Range Weather Forecasts. The recently released hourly reconstructions of historical weather allowed investigation of daily cycles.

The next step, Chiodi said, is to further explore the causes of these changes in nighttime vapor pressure deficit. After that, he hopes to connect the atmospheric conditions more directly to fuel moisture and fire behavior.

The other co-author is Narasimhan ‘Sim’ Larkin at the U.S. Forest Service’s Pacific Wildland Fire Sciences Laboratory in Seattle. The research was funded by the U.S. Forest Service through its AirFire research team and by NOAA (grants: 100007298, NA15OAR4320063).


AGU (www.agu.org) supports 130,000 enthusiasts to experts worldwide in Earth and space sciences. Through broad and inclusive partnerships, we advance discovery and solution science that accelerate knowledge and create solutions that are ethical, unbiased and respectful of communities and their values. Our programs include serving as a scholarly publisher, convening virtual and in-person events and providing career support. We live our values in everything we do, such as our net zero energy renovated building in Washington, D.C. and our Ethics and Equity Center, which fosters a diverse and inclusive geoscience community to ensure responsible conduct.

Notes for Journalists:
This research study is open access and freely available. Download a PDF copy of the paper here. Neither the paper nor this press release is under embargo.

Paper title:
“Multi-decadal change in western US nighttime vapor pressure deficit”


  • Andy M. Chiodi, Joint Institute for the Study of the Atmosphere and Ocean, University of Washington and National Oceanographic and Atmospheric Administration Pacific Marine Environmental Laboratory, Seattle, WA, USA.
  • Brian E. Potter and Narasimham K. Larkin, Pacific Wildland Fire Sciences Laboratory, USDA Forest Service, Seattle, WA, USA


University of Washington press release: https://www.washington.edu/news/2021/08/05/dry-air-wildfires/