Researchers model how octopus arms make decisions

New research presented at the 2019 Astrobiology Science Conference in Bellevue, Wa.

25 June 2019


Hyatt Regency Bellevue
900 Bellevue Way NE
Bellevue, Washington, 98004
24-28 June 2019

AGU press contact:
Liza Lester
+1 (202) 777-7494
llester@agu.org

Included in this announcement:

  1. Research from the 2019 AbSciCon meeting: Researchers model how octopus arms make decisions; live stream 6:00 p.m. PDT
  2. Press workshop on ocean exoplanets; live stream 11:00 a.m. PDT

1. Researchers model how octopus arms make decisions (+ video)

Researcher contacts:
Dominic Sivitilli, University of Washington
+1 (425) 269-0365
domsivi@uw.edu

David Gire, University of Washington
+1 (206) 543-2315
dhgire@uw.edu

giant pacific octopus

Giant Pacific octopus.
Credit: Dominic Sivitilli

BELLEVUE, WA—Researchers studying the behavior and neuroscience of octopuses have long suspected that the animals’ arms may have minds of their own.

A new model being presented here is the first attempt at a comprehensive representation of information flow between the octopus’s suckers, arms and brain, based on previous research in octopus neuroscience and behavior, and new video observations conducted in the lab.

The new research supports previous findings that octopus’ suckers can initiate action in response to information they acquire from their environment, coordinating with neighboring suckers along the arm. The arms then process sensory and motor information, and muster collective action in the peripheral nervous system, without waiting on commands from the brain.

The result is a bottom-up, or arm-up, decision mechanism rather than the brain-down mechanism typical of vertebrates, like humans, according to Dominic Sivitilli, a graduate student in behavioral neuroscience and astrobiology at the University of Washington in Seattle who will present the new research Wednesday at the 2019 Astrobiology Science Conference (AbSciCon 2019). His talk will be live streamed from 6:00–6:15 p.m. U.S. Pacific time.

The researchers ultimately want to use their model to understand how decisions made locally in the arms fit into the context of complex behaviors like hunting, which also require direction from the brain.

“One of the big picture questions we have is just how a distributed nervous system would work, especially when it’s trying to do something complicated, like move through fluid and find food on a complex ocean floor. There are a lot of open questions about how these nodes in the nervous system are connected to each other,” said David Gire, a neuroscientist at the University of Washington and Sivitilli’s advisor for the project.

Long an inspiration for science-fictional, tentacled aliens from outer space, the octopus may be as alien an intelligence as we can meet on Earth, Sivitilli said. He believes understanding how the octopus perceives its world is as close as we can come to preparing to meet intelligent life beyond our planet.

“It’s an alternative model for intelligence,” Sivitilli said. “It gives us an understanding as to the diversity of cognition in the world, and perhaps the universe.”

The octopus exhibits many similar behaviors to vertebrates, like humans, but its nervous system architecture is fundamentally different, because it evolved after vertebrates and invertebrates parted evolutionary ways, more than 500 million years ago.

Vertebrates arranged their central nervous system in a cord up the backbone, leading to highly centralized processing in the brain. Cephalopods, like the octopus, evolved multiple concentrations of neurons called ganglia, arranged in a distributed network throughout the body. Some of these ganglia grew more dominant, evolving into a brain, but the underlying distributed architecture persists in the octopus’s arms, and throughout its body.

“The octopus’ arms have a neural ring that bypasses the brain, and so the arms can send information to each other without the brain being aware of it,” Sivitilli said. “So while the brain isn’t quite sure where the arms are in space, the arms know where each other are and this allows the arms to coordinate during actions like crawling locomotion.”

Of the octopus’ 500 million neurons, more than 350 million are in its eight arms. The arms need all that processing power to manage incoming sensory information, to move and to keep track of their position in space. Processing information in the arms allows the octopus to think and react faster, like parallel processors in computers.

Sivitilli works with the largest octopus in the world, the Giant Pacific octopus, as well as the smaller East Pacific red, or ruby, octopus. Both species are native to Puget Sound off Seattle’s coast and the Salish Sea, and have learning and problem-solving capabilities analogous to those studied in crows, parrots and primates.

To entertain the octopuses and study their movements, Sivitilli and his colleagues gave the octopuses interesting, new objects to investigate, like cinder blocks, textured rocks, Legos and elaborate mazes with food inside. His research group is looking for patterns that reveal how the octopus’ nervous system delegates among the arms as the animal approaches a task or reacts to new stimuli, looking for clues to which movements are directed by the brain and which are managed from the arms.

Sivitilli employed a camera and a computer program to observe the octopus as it explored objects in its tank and looked for food. The program quantifies movements of the arms, tracking how the arms work together in synchrony, suggesting direction from the brain, or asynchronously, suggesting independent decision-making in each appendage.

“You’re seeing a lot of little decisions being made by these distributed ganglia, just by watching the arm move, so one of the first things we’re doing is trying to break down what that movement actually looks like, from a computational perspective,” Gire said. “What we’re looking at, more than what’s been looked at in the past, is how sensory information is being integrated in this network while the animal is making complicated decisions.”

###

AGU and NASA will host the 2019 Astrobiology Science Conference (AbSciCon) in Bellevue, Washington, June 24-28, 2019, exploring the theme “Understanding and Enabling the Search for Life on Worlds Near and Far.” Among other topics, the conference will address planetary system interactions and habitability; alternative and agnostic biosignatures; understanding the environments of early Earth; evidence for early life on Earth; energy sources in the environment and metabolic pathways that use that energy; and ocean worlds near and far. #AbSciCon19

*****

Notes for Journalists:
Lead author Dominic Sivitilli will deliver an oral presentation about this research at the 2019 Astrobiology Science Conference on Wednesday, 26 June 2019 from 6:00–6:15 p.m. PDT at the Hyatt Regency Bellevue, room Regency EFG.

Presentation Title:
“Collective cognition in the arms of the octopus”

Session:
Evolution of life’s complexity on a habitable planet II

Authors:
Dominic Michel Sivitilli
, Department of Psychology and Astrobiology Program, University of Washington, Seattle, WA

David H Gire, University of Washington, Department of Psychology, University of Washington, Seattle, WA

Videos:

The graphs represent angular speed of the arms over time. These graphs can indicate synchronous or asynchronous movement patterns between arms, which indicates when arms are receiving a common signal from the brain or the environment.
Credit: Dominic Sivitilli/University of Washington

Potentially newsworthy presentations:
Media tip sheets organized by scientific topic and by date highlight additional, potentially newsworthy presentations selected by AGU’s public information office.

The full scientific program for AbSciCon 2019, including abstracts for more than 800 oral and poster presentations, is available online.

 

 2. Exo-oceanography and ocean world evolution workshop (June 25)

AGU will host a media workshop on Tuesday, June 25 from 11:00 a.m. to 12:00 p.m. PDT on exo-oceanography: the oceanography of exoplanets in the press briefing room, Grand Ballroom K, on the second floor of the Hyatt Regency Bellevue. The June 25 workshop will be streamed live over the web at this link, the “satellite” feed.

Speakers will discuss how oceans on other worlds might be different than oceans on Earth; how they may circulate heat and nutrients differently and how these different circulation patterns may be suitable for life; how oceans may circulate on planets tidally-locked to their host star; how ocean worlds evolve; and what kinds of biosignatures scientists can look for in otherworldly oceans.

Speakers include Stephanie Olson, University of Chicago; Yaoxuan Zeng, Peking University; and Britney Schmidt, Georgia Institute of Technology. Additional speakers TBD.

Also on Tuesday:

  • Researchers will give an update on NASA’s Exoplanet Exploration Program on Tuesday, June 25 from 12:20 to 2:20 p.m. PDT in Grand Ballroom I-J on the second floor of the Hyatt Regency.
  • A panel of speakers within and outside the field of astrobiology will discuss how to diversity and improve inclusivity of underrepresented groups within the field during the Allies and Advocates in Astrobiology: A Discussion on Diversity and Inclusivity session on Tuesday, June 25 from 5:15 to 6:30 p.m. PDT in Regency Ballroom EFG on the second floor of the Hyatt Regency.
  • Three scholars and thinkers – an astrobiologist, an astrophysicist, and an English professor – will offer their views on social and conceptual issues in astrobiology during a public lecture on Tuesday, June 25 at 7:00 p.m. PDT at the University of Washington in Kane Hall, room 130.